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ABSTRACT

We study the linear intersubband absorption spectra of a 15nm InAs quantum well using the intersubband
semiconductor Bloch equations with a three-subband model and a constant dephasing rate. We demonstrate
the evolution of intersubband absorption spectral line shape as a function of temperature and electron density.
Through a detailed examination of various contributions, such as the phase space filling effects, the Coulomb
many-body effects and the nonparabolicity effect, we illuminate the underlying physics that shapes the spectra.
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1. INTRODUCTION

Intersubband optical phenomena attract great attention for their applications in communications, sensing, imag-
ing, and “finger printing” molecules in the infrared regime.1–3 The advantages of an intersubband transition
(ISBT)-based device include bandgap-independent design rules, large dipole matrix elements, and ultrafast dy-
namic response.4–7 Particularly, antimonide-based quantum well (QW) heterostructures, such as InAs/AlSb
with a conduction band offset as deep as 2eV, provide attractive design flexibilities.

We have investigated effects of bandstructure, Coulomb interaction, electron-longitudinal optical (LO) phonon
interaction, and other material-related issues on ISBTs within a two-subband model.8–11 The analysis is based
on density matrix formalism. In this paper, linear intersubband absorption spectra in a 15nm InAs quantum
well are studied in the same framework—the intersubband semiconductor Bloch equations approach—but under
a three-subband model and dephasing rate approximation. We demonstrate the evolution of intersubband
absorption line shape as temperature and carrier density are changed. Through a detailed examination of
various contributions, such as phase space filling effects and Coulomb interaction-induced many-body effects, we
elucidate the underlying physics that shapes the spectra.

Theoretical treatment of intersubband transitions typically involves two steps. The first step is to compute
the bandstructure, while the second step is to formulate light-semiconductor interaction on the basis of this
obtained bandstructure. The first step is sometimes called determination of the ground state, while the second
step treats the excitations of the system by external light field. In the present model study, we model the band-
structure with different effective masses for the three parabolic subbands, whereas the density matrix theory12, 13

is adopted to treat the light-semiconductor heterostructure interaction. By explicitly formulating the two-point
correlation functions, such as the intersubband polarization, the set of the so-called intersubband semiconductor
Bloch equations (iSBEs) is derived. Within this approach, it is known that the exchange interaction leads to
a self-energy renormalization (exchange self-energy, or XSE) to the single particle energy and a nonlocal ver-
tex (excitonlike in the case of interband transitions) term that couples the other intersubband polarizations to
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each individual k-transition, whereas the direct (Hartree) interaction contributes the so-called depolarization
field term that describes the dynamic screening of the charge carriers to the external exciting field, which is of
collective nature and modifies the local field that each individual carrier feels. This paper examines in detail the
case of a 15nm InAs quantum well within a three-subband model and illustrates how different contributions help
shape the ISBTs as a function of temperature and carrier density.

This paper is organized as follows: In the second section, we summarize our theoretical considerations with
a minimum set of equations; we present simulated ISBT spectra for the InAs quantum well in Sec. 3; and then
we conclude the paper with a summary.

2. THEORETICAL CONSIDERATIONS

As mentioned above, the microscopic theory consists of two steps: the static description of the subband disper-
sions and kinetic description for the intersubband optical transitions. We describe the energy dispersions in an
approximate manner in this work, or more specifically, different effective masses are used for the three subbands.
The focus of our work is on the kinetic description of the ISBTs.

To treat the light-semiconductor heterostructure interaction, we consider the following expectation values
of the bilinear combination of creation (c†nk) and annihilation (cnk) operators among the same k (the in-plane
electron wavevector) states within a three-subband model (subband labeled by index n = 1, 2, 3): ground subband

population f1k ≡ 〈c†1kc1k〉, lower excited subband population f2k ≡ 〈c†2kc2k〉, upper excited subband population

f3k ≡ 〈c†3kc3k〉, intersubband polarization p12(k) ≡ 〈c†1kc2k〉 between subband 1 and 2, p23(k) ≡ 〈c†2kc3k〉 between

subband 2 and 3, p13(k) ≡ 〈c†1kc3k〉 between subband 1 and 3, and their corresponding Hermitian conjugates.
Following the quantum kinetic approach, the semiclassical kinetic equations for the above dynamic variables are
derived as a limiting case.13 The derivation is extensive and will not be given here. Under linearization with
respect to the incident light field amplitude, some plausible assumptions, and the rotating wave approximation,
the resultant equations for intersubband polarizations are found as follows:

[
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where ω is the angular frequency of the incident light of amplitude E0, γmn
p is the dephasing rate, dmn

k is the
dipole matrix element, and l 6= m, l 6= n. fmk is taken as the Fermi distribution function in the linear absorption
calculation and pmn

k is the amplitude of the intersubband polarization pmn(k). The renormalized single particle
energy (εmk) by the Coulomb self-energy and the local field correction term (εmn

k ) are, respectively, given by
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The local field correction consists of a Fock (first) term that gives rise to a type of collective excitation called
repellon, and, a Hartree (second) term that stimulates another type of collective excitation called the intersubband
plasmons (ISPs).10, 14 We mention that the first term is responsible for the Fermi-edge singularity effect, whereas
the second term leads to the depolarization effect, as described in detail in our earlier work. Their effects have
been known from previous studies and play the same roles as well within the present three-subband model. The
Coulomb matrix elements (V njml

q ’s) are defined as in Ref. 9. The static single plasmon-pole approximation12

has been used for screening the exchange interaction by the intrasubband processes in the present work. The
iSBEs are solved numerically by a matrix inversion for the intersubband polarization functions. We note that
the last term in Eq. (1) is unimportant in this work.

The linear absorption coefficient is defined by

α(ω) ≡
ω

ε0n(ω)c
Im{ε(ω)} ≈

ω

n(ω)c
Im{χ(ω)} , (4)



with n(ω) being the background index of refraction (slowly varying in frequency), ε(ω) the dielectric function,
and c the speed of light in vacuo. The susceptibility, χ(ω), is given by

χ(ω) ≡ P/ε0E0 , (5)

P = 2S/[(2π)2V ]
∑

m 6=n

∫

dk {dmn
k }∗pmn

k . (6)

where P is the total intersubband polarization, ε0 is the electric constant, S is the QW area, and V is the QW
volume. V = WS, and W is the QW thickness. Finally, the absorbance of the semiconductor heterostructure is
given by 2Wα(ω) (per bounce at TM polarization).

3. NUMERICAL RESULTS

Table I lists the bandstructure-related parameter values that were used in the numerical simulation. All the values
were obtained using a spurious-state-free 8-band k·p Hamiltonian under the envelope function approximation,9, 15

with the exception of the depolarization factors; their values are the quantum box results of the same QW
thickness. The calculated subband populations are presented in Table II, which help explain the simulated
spectra, shown later.

Table I. Parameters used in simulations
subband effective mass mi (me) 0.0336 (1) 0.049 (2) 0.0715 (3)

subband separation Eij (meV) 131.065 (12) 150.92 (23) 281.985 (13)
dipole matrix element dij (e·Å) 30.0 (12) 35.0 (23) 0.0 (13)
depolarization factor Djlmn (W) 0.1222 (1122) 0.1146 (2233) 0.0343 (1133) 0.1101 (1232)

me: free electron mass; e: absolute electron charge. Numbers in parenthesis behind entry values indicate
subband indices. See Ref. 14 for the definition of the depolarization factor.

The effective masses were found after a least square fitting to the k ·p subbands; the subband separation is the
energy difference at the Γ point (k = 0) between the k · p subbands; the dipole matrix elements are found to be
weakly dependent on the wavevector so that their values at the Γ point were used in the simulation. We mention
that the depolarization factor is a measure of the contributing strength of the Hartree term to the local field,
which in turn determines the strength of the ISPs.10, 14 Note that a value on the order of 0.1, in the unit of the
QW thickness (W), means a rather strong depolarization effect; the total strength of the depolarization effect is
proportional to the product of the QW thickness and the density difference between the subbands. Furthermore,
coherent Coulomb effects due to the coupling of ISPs associated with individual ISBTs are important, and the
results will be presented elsewhere.

Table II. Calculated subband populations
electron density (1012 cm−2) temperature (K) n1 n2 n3

1.00 12 1.00 0.00 0.00
80 1.00 2.41×10−5 1.09×10−14

300 9.58×10−1 4.16×10−2 1.84×10−4

2.50 12 2.11 3.92×10−1 0.00
80 2.10 3.95×10−1 9.91×10−10

300 2.00 4.96×10−1 3.49×10−3

5.00 12 3.13 1.87 0.00
80 3.13 1.87 3.77×10−5

300 3.09 1.84 6.78×10−2

7.50 12 4.06 3.23 2.10×10−1

80 4.04 3.21 2.49×10−1

300 3.93 3.06 5.10×10−1

ni: Electron density in Subband i.



Shown in Fig. 1 are the energy dispersions of the three conduction subbands (left panel) considered and
the single-particle absorption spectrum (right panel) of the 15nm InAs QW. Owing to a nonparabolicity in the
bulk InAs conduction band, dispersions for the three subbands are different so that the subband separations
are k-dependent. The rather strong nonparabolicity of InAs leads to a large value range of the intersubband
separation. In a single-particle picture, this introduces an inhomogeneous broadening and an accompanying low
frequency tailing to the absorption spectrum. All these characteristics are reflected in the figure. Note that we
did not consider the temperature dependence of the subband strucuture in this model study. As a comparison,
we also show in the figure the case of a vanishing nonparabolicity (dashed curves with upward arrows): The
spectrum consists of sharp resonances without any inhomogeneous broadening.

k

nonparab.

parabolic

energy

a
b
s
o
rb

a
n
c
e

k
F1

k
F2

1 2

2 3

k
F1

k
F2

1

2

3

E
F

(a) (b)

Figure 1. Schematic of subband dispersions (left panel) and single-particle intersubband absorption spectrum for a 15nm
InAs quantum well. The decreasing intersubband separation with increasing k represents the result of a nonparabolicity
in the InAs conduction band, which is consequently reflected by the broadened absorption spectrum.

Next, we study the effects of Coulomb many-body and collective effects. We first show how the absorbance
changes as a function of temperature at different electron densities in Fig. 2. Since the two-subband results have
been understood rather well,10, 14 we thus emphasize density range where a three-subband model is warranted,
that is when the lower excited subband 2 starts to be populated. We have chosen four densities, as denoted in
the figures as well as in Table II. At the lowest one, the second subband is only thermally populated at 300 K,
as witnessed by the appearance of the weak resonance from the lower excited subband 2 to the upper excited
subband 3 (2→3) near 150meV. Otherwise, only a single, inhomogeneously broadened resonance (1→2) is present.
Expectedly, it is further weakened and broadened thermally, as electrons increasingly populate higher energy
states that have smaller transition energies, as displayed in Fig. 1. An increase in electron density strengthens
resonance 2→3 because the amplitude of the resonance is roughly proportional to the density difference of the



two subbands, n2 −n3. This dependence on the density difference also provides an explanation for the reduction
in resonance strength as temperature rises at all four densities, which tends to diminish the difference. This is
a phase space filling effect. Another manifestation is seen in the red shift of resonance 1→2—more distinctly in
Fig. 3—as a function of density. On the other hand, note that at a certain density, e.g., 5×1012 cm−2 in Fig. 2,
resonance 2→3 is temperature insensitive. As we understand it now, ISBT is a collective phenomenon associated
with the intersubband plasmon under normal circumstances, which could be a robust response, depending
upon how strong the plasmon couples to the decay channels, possibly through Landau damping, as argued
by Warburton et al.16 It is worth mentioning that in this model study, we have set the dephasing rate to 1meV
and no particular dephasing physics is considered. Furthermore, temperature dependence of ISBTs is a strong
function of nonparabolicity, as shown later in Fig. 4.
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Figure 2. Absorbance dependence on temperature at different electron densities. At low density, only the ground subband
1 is occupied and thus only single resonance (1→2) is observed at low temperature. Thermal population of the lower
excited subband 2 (see Table II) is revealed by the presence of a second resonance (2→3). This resonance grows as density
increases. Accordingly, the first resonance is weakened and redshifted, as a consequence of phase space filling. Note that
at certain density, e.g., 5×1012 cm−2, the second resonance is temperature-insensitive.

The same results as in Fig. 2 are further presented as a function of electron density at different temperatures
in Fig. 3 to illustrate all the effects from a different perspective. The phase space filling effects are more directly
demonstrated in this case. First, at this particular QW thickness (15nm), the first resonance line shape at
the lowest chosen density of 1×1012 cm−2 is single-particle-like, or a spectrum reflecting the constant 2D joint
density of states as a result of the interplay of collective excitations.10 Increase in electron density has two
consequences: starting populating the higher subband(s) and thus redistributing the oscillator strengths. As
seen from resonance 1→2, a larger density broadens its line shape further, collects the oscillator strength in
favor of the high-frequency side, and redshifts the spectrum. All these are indications that the ISPs play a more
dominant role in the interplay, which is expected for higher density cases. Then, the resonance is gradually



diminished as further increase in electron density actually decreases the density difference of the two subbands,
n1 − n2. As a result, more redshift of the spectrum is observed. On the other hand, resonance 2→3 starts
to appear below a density of 2×1012 cm−2 and takes a symmetric line shape at low temperatures. This is
changed as either the temperature or the density increases, as seen in the figure. Within the present three-
subband model, further increase in electron density first blueshifts the spectrum before the upper subband
begins to be populated, because the self-energy renormalization of the populated subband increases the effective
intersubband separation—similar to the two-subband model results.10 However, as expected, continuing to
increase the electron density will start to populate the upper subband 3 (see Table II). Then, the oscillator
strength will eventually decrease and the spectrum will redshift, just like resonance 1→2. Ultimately, we need
to consider resonance(s) from subband 3 to even higher one(s). Note that we have not explicitly presented
simulation results for resonance 1→3, which lies at higher energy beyond the spectral range of interest, but its
physics is fundamentally the same as what we have discussed with regard to the other two resonances.
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Figure 3. Same absorbance data as in Fig. 2, but presented at different electron densities for a given temperature in each
panel. Clearly seen is the phase space filling effects: Occupancy of the lower excited subband 2 introducing the second
resonance (2→3) and adding to its oscillator strength as density increases; the enhancement of the plasmon peak at low
temperature (12 K); redshifting both resonances as lower k states are occupied. Note the anomalous decrease at 300 K
of the second resonance—a reflection of the robustness of the plasmon excitation at 5×1012 cm−2, as discussed earlier.

What has not been touched upon till now is the nonparabolicity effect—this is the focus of Fig. 4. To
demonstrate that, we choose an extreme case, that is, to set the effective mass (m3) of the upper excited
subband equal to that (m2) of the lower excited subband. In other words, there is no nonparabolicity effect, to



the lowest order, for resonance 2→3. Furthermore, the intersubband separation E23 is set to 173meV, which bears
no particular meaning other than to avoid the subject of the coupling of intersubband plasmons, which is the
topic of a future paper. Not surprisingly, resonance 1→2 behaves as shown previously. Furthermore, as expected,
we observe narrow and symmetric Lorentzian line shape for resonance 2→3. Two features are worth noting: (i)
an anomalous temperature dependence of the resonance at 2×1012 cm−2 and (ii) the temperature insensitivity
of this resonance at higher density. On the first feature, the resonance is strongly enhanced when temperature
rises. This turns out to be a manifestation of the phase space filling effects: At low temperatures, the second
subband is populated with a rather small electron density. As the temperature increases, more electrons are
thermally excited from the ground subband into the second one. As a result, the number of electrons available for
absorbing incident photons at resonance 2→3 increases as well. Thanks to zero nonparabolicity, the temperature
rise does not broaden the line shape, in contrast to a large nonparabolicity case as discussed already. Therefore,
the anomalous temperature dependence of the resonance at the density of 2×1012 cm−2 is observed. Following
the same line of thinking, the second feature of temperature insensitivity at higher density is easily understood.
That is to say, under normal circumstances, the ISBTs are robust if without nonparabolicity. In this sense,
temperature insensitivity of an ISBT in a material with large nonparabolicity is accidental, as shown in Figs.
2–3. Finally, the blueshift of the resonance with increase in electron density reflects an effect of the Hartree
contribution in Eq. (3). It is often called the depolarization shift in literature17, 18 as, in the present case of zero
nonparabolicity, it acts similar to a depolarization field.
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Figure 4. Absorbance evolution similar to Fig. 2, but depicting the nonparabolicity effect as the effective mass of the
upper excited subband was set to equal that of the lower excited subband. The intersubband separation E23 is set to
173 meV. Two features are worth noting regarding the second resonance: (i) anomalous temperature dependence at
2×1012 cm−2 and (ii) its temperature insensitivity at higher density.



4. CONCLUSION

We present a microscopic theoretical approach to intersubband optical resonances, similar to the semiconductor
Bloch equations approach to interband transitions. This approach is applied to a 15nm InAs quantum well case
representative of materials with large conduction band nonparabolicity. The evolution of intersubband resonances
as a function of the temperature and the electron density is presented and discussed in detail. We demonstrate
the importance of the phase space filling effects and Coulomb many-body effects in understanding the underlying
physics of intersubband resonances. Finally, we show that the nonparabolicity effect is instrumental in shaping
the spectra of intersubband resonances.
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